
Inheritance

Check out Inheritance from SVN

 You can define a class inside another class

◦ This is called a nested class

◦ It has access to the outer class’ fields and methods

◦ Useful if the inside class is a “helper class” of interest only
to the outside class

 You can define a class and construct an instance of
it inside a method

◦ This is called a local inner class

◦ Useful if the class is small and the object refers to variables
in the outside class

 You can even make the inside class anonymous.

◦ This is called an anonymous inner class

◦ Let’s do an example

This nomenclature is not universal. See

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top

for more than you could possibly want to know about this subject
Q1

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top

 LinearLightsOut

 Individual assignment

 Show you internalized what you learned from
SwingDemo

 Anonymous listeners could help (but not
required)

 A good practice exam question

 Due Tuesday
◦ I recommend you complete through stage 5 tonight

so you can ask questions tomorrow.

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

Q2

 class SavingsAccount extends BankAccount

◦ adds interest earning, keeps other traits

 class Employee extends Person

◦ adds pay info. and methods, keeps other traits

 class Manager extends Employee

◦ adds info. about employees managed, changes pay
mechanism, keeps other traits

 class SavingsAccount extends BankAccount {

// added fields

// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q3

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q4

 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the
methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the
methods of BankAccount

For client code
reuse

For
implementation

code reuse

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

◦ The new method can do completely different
behavior from the overridden method, or it can do
the overridden behavior plus some new behavior

 Add entirely new methods not in superclass

Q5

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q6

 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first
line of the subclass

constructor

Q7

 Hybrid of superclasses and interfaces
◦ Like regular superclass:

 Provide implementation of some methods

◦ Like interfaces

 Just provide signatures and docs of other methods

 Can’t be instantiated

 Example:

◦ public abstract class BankAccount {

/** documentation here */

public abstract void deductFees();

…

}

Elided methods as before

 Review
◦ public—any code can see it

◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code

in the same package can see it

 good choice for related classes

◦ protected—like default, but
subclasses also have access

 sometimes useful for helper methods

Bad for
fields!

Fields
should be

private

Q9

 Methods can call super.methodName(…)
◦ To do the work of the parent class method, plus…

◦ Additional work for the child class

public class Workaholic extends Worker {

public void doWork() {

super.doWork();

drinkCoffee();

super.doWork();

}

}

BallWorlds
• Pair programming with a new partner

• Project is in your repository

• Instructions are on course web site,
under Programs ~ BallWorlds ~ instructions.htm

• Your instructor will demo BallWorlds and discuss its
UML, especially the Ball interfaces

n Team

01 krachtkq,davidsac

02 buqshank,kominet

03 beaversr,carvers

04 popenhjc,lemmersj

05 duganje

06 labarpr,parasby

07 weavergg,hannumed

08 runchemr,walthagd

09 smebaksg,amanb

10 mcgeevsa,ngop

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201030-ballworlds-teamXX

n Team

11 cheungkt,hugheyjm

12 wanstrnj,macshake

13 shinnsm,eatonmi

14 moravemj,correlbn

15 pedzindm,sheetsjr

16 woodhaal,foltztm

17 breenjw

Check out BallWorlds from SVN

